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Abstract. Similarity of graphs with labeled vertices and edges is natu-
rally defined in terms of maximal common subgraphs. To avoid compu-
tation overload, a parameterized technique for approximation of graphs
and their similarity is used. A lattice-based method of binarizing la-
beled graphs that respects the similarity operation on graph sets is pro-
posed. This method allows one to compute graph similarity by means
of algorithms for computing closed sets. Results of several computer ex-
periments in predicting biological activity of chemical compounds that
employ the proposed technique testify in favour of graph approximations
as compared to complete graph representations: gaining in efficiency one
(almost) does not lose in accuracy.

1 Introduction

In last years the problem of learning from data given by labeled graphs at-
tracted much attention in Machine Learning and Data Mining communities
[1,2,3,4,5,6,7,8,9]. In our paper we address this issue using an approach based on
generation of closed sets of labeled graphs and their approximations. On the one
hand, this approach is related to computation of most specific (or least general)
generalizations of positive (or negative) examples, which proved to be successful
in real-life applications, including predictive toxicology [10]. On the other hand,
generation of (frequent) closed itemsets turned out to be useful for computing
the set of all well-supported association rules [11]. This explains recent attention
to computing closed graphs in data mining [8]. As reported in [8], CloseGraph
algorithm computes frequent graphs much faster than its forerunner gSpan [7],
and WARMR [1], an ILP program.

An important application for learning with labeled graphs is the analysis of
properties of chemical substances. Fragmentary Code of Substructure Superpo-
sition (FCSS) [12,10] has been designed and permanently refined for this purpose
and proved to be a very efficient tool. For example, it was successfully applied
(as estimated by ROC diagrams) in the open PTC competition [13,10,14]. As
reported in [14], FCSS produced the largest number of useful attributes in com-
parison with other representations used in PTC. The drawbacks of FCSS are
related to the loss of information about connection between molecular parts and
the lack of flexibility w.r.t. different problems. To compensate for this, a similar-
ity operation � on sets of labeled graphs, representing molecules, was proposed
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in [15,16,3]. This operation, defining similarity of sets of labeled (hyper)graphs,
has the property of a semilattice: it is idempotent (X �X = X), commutative
(X � Y = Y �X), and associative (X � (Y � Z) = (X � Y ) � Z). This allows
one to compute similarity of graph sets by means of algorithms for computing
closed sets (see review [17]) well-known in Formal Concept Analysis [18].

The main problem with practical implementation of this operation is that
of computational complexity: to compute similarity of two graphs one needs to
make several tests of subgraph isomorphism (which is in general NP-complete),
and make tests for graph isomorphism.

A theoretical means for approximate computation in semilattices, called pro-
jections, was proposed in [19] and the first computer implementation was de-
scribed in [20]. In this paper we study projections for semilattices on graph sets
and their use in learning models. Here we consider a realization of similarity
operation on graph sets and their projections realized by means of certain order-
theoretic and lattice-theoretic techniques. We consider several applied problems
in the analysis of biological activity of chemical compounds. To predict target
attribute values (biological activities) we employ and compare several learning
models: induction of decision trees, Naive Bayes classifier (see, e.g., [21]) and
JSM-method or concept-based learning [22,3,19]. In this paper the issues of pro-
gram realization and efficiency are not considered in details, since our programs
are Java prototypes. We concentrate mostly on combinations of learning models
with representation languages, and evaluations of their predictive accuracy. Re-
sults obtained for learning with graph projections for various values of projection
parameter are compared with those obtained with FCCS representation.

The paper is organized as follows. In the second section we describe the gen-
eral theoretical framework for computing similarity (meet) of graph sets together
with a means for its approximate computations. In the third section we discuss
the learning models used in this work. In the fourth section we describe com-
puter experiments in the analysis of molecular graphs (of chemical compounds
from the PTC dataset [13], halogen-substituted aliphatic hydrocarbons, alco-
hols, etc.) where the above representations and learning models are used. In the
fifth section the results are discussed and some conclusions are made.

2 Closed Sets of Labeled Graphs and Their Projections

In [15,16,3] a semilattice on sets of graphs with labeled vertices and edges was
proposed. This lattice is based on a natural domination relation between graphs
with labeled vertices and edges. Consider an ordered set P of connected graphs1

with vertex and edge labels from the set L with partial order �. Each labeled
graph Γ from P is a quadruple of the form ((V, l), (E, b)), where V is a set of
vertices, E is a set of edges, l:V → L is a function assigning labels to vertices,
and b:E → L is a function assigning labels to edges.

1 Omitting the condition of connectedness, one obtains a (computationally harder)
model that accounts for multiple occurrences of subgraphs.
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For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2)) from P we
say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if there
exists an injection ϕ:V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), if (v, w) ∈ E2 then b2(v, w) � b1(ϕ(v),
ϕ(w)).

Obviously, (P,≤) is a partially ordered set.
Example 1. Let L = {C, NH2, CH3, OH, x} then we have the following rela-
tions:

C CH3

C

Cl

≤
CH3 C OH

C

Cl CH3

x C x

C

NH2 OH

≤
NH2 C OH

C

Cl CH3

vertex labels are unordered x � A for any vertex label A ∈ L

Now a similarity operation � on graph sets can be defined as follows: For two
graphs X and Y from P

{X} � {Y } := {Z | Z ≤ X,Y, ∀Z∗ ≤ X,Y Z∗ �≥ Z},
i.e., {X} � {Y } is the set of all maximal common subgraphs of graphs X and
Y . Similarity of non-singleton sets of graphs {X1, . . . , Xk} and {Y1, . . . , Ym} is
defined as

{X1, . . . , Xk} � {Y1, . . . , Ym} := MAX≤(∪i,j({Xi} � {Yj})),
where MAX≤(X) returns maximal (w.r.t. ≤) elements of X . Here is an example
of applying �:
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⎪⎪⎪⎪⎪⎪⎩
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⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

The similarity operation � on graph sets is commutative: X � Y = Y �X
and associative: (X � Y ) � Z = X � (Y � Z).

A set X of labeled graphs from P for which � is idempotent, i.e., X�X = X
holds, is called a pattern. For patterns we have MAX≤(X) = X . For example,
for each graph g ∈ P the set {g} is a pattern. On the contrary, for Γ1, Γ2 ∈ P
such that Γ1 ≤ Γ2 the set {Γ1, Γ2} is not a pattern. Denote by D the set of
all patterns, then (D,�) is a semilattice with infimum (meet) operator �. The
natural subsumption order on patterns is given by

c � d : ⇐⇒ c � d = c.
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Let E be a set of example names, and let δ : E → D be a mapping, taking
each example name to {g} for some labeled graph g ∈ P (thus, g is “graph de-
scription” of example e). The triple (E, (D,�), δ) is a particular case of a pattern
structure [19]. Another example of an operation � may be the following semi-
lattice on closed intervals from [16]: for a, b, c, d ∈ R, [a, b]� [c, d] = [max {a, c},
min {b, d}] if [a, b] and [c, d] overlap, otherwise [a, b] � [c, d] = ∅. This semilat-
tice, where numbers are values of activation energy (computed for molecules by
a standard procedure, e.g. see [23]) was used in predicting toxicity of alcohols
and halogen-substituted hydrocarbons (see Section 4). The resulting similarity
semilattice in this application is that on pairs, where the first element is a graph
set and the second element is a numerical interval.

Derivation operators are defined as

A� := �e∈A δ(e) for A ⊆ E

and

d� := {e ∈ E | d � δ(e)} for d ∈ D.

For a, b ∈ D the pattern implication a→ b holds if a� � b�. Implications are
exact association rules (with confidence = 1). Operator (·)�� is an algebraical
closure operator [24,18] on patterns, since it is

idempotent: d���� = d��,
extensive: d � d��,
monotone: d�� � (d ∪ c)��.

For a set X the set X�� is called closure of X . A set of labeled graphs X
is called closed if X�� = X . This definition is related to the notion of a closed
graph [8], which is important for computing association rules between graphs.
Closed graphs are defined in [8] in terms of “counting inference” as follows.

Given a labeled graph dataset D, support of a graph g or support(g) is a set
(or number) of graphs in D, in which g is a subgraph. A graph g is called closed
if no supergraph f of g (i.e., a graph such that g is isomorphic to its subgraph)
has the same support.

Note that the definitions distinguish between a closed graph g and the closed
set {g} consisting of one graph g. Closed sets of graphs form a meet semilatice
w.r.t. infimum or meet operator. A finite meet semilattice is completed to a
lattice by introducing a unit (maximal) element. Closed graphs do not have this
property, since in general, there can be nonunique supremums and infimums of
two closed graphs.

Proposition. Let a dataset described by a pattern structure (E, (D,�), δ) be
given. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g ∈ G.
2. For a closed set of graphs G and an arbitrary g ∈ G, graph g is closed.

Proof. 1. Consider the closed set of graphs G = {g}��. Since G consists of all
maximal common subgraphs of graphs that have g as a subgraph, G contains as
an element either g or a supergraph f of g. In the first case, property 1 holds. In
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the second case, we have that each graph in G that has g as a subgraph also has
f as a subgraph, so f has the same support as g, which contradicts with the fact
that g is closed. Thus, G = {g}�� is a closed set of graphs satisfying property 1.
2. Consider a closed set of graphs G and g ∈ G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G� (i.e, its support), f ∈ G should
hold. This contradicts the fact that g ∈ G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). �

Therefore, one can use algorithms for computing closed sets of graphs, e.g.,
the algorithm in [3], to compute closed graphs. With this algorithm one can
also compute all frequent closed sets of graphs, i.e., closed sets of graphs with
support above a fixed minsup threshold (by introducing a minor variation of the
condition that terminates computation branches).

Computing � may require considerable computation resources: even testing
� is NP-complete. To approximate graph sets we consider projection (kernel)
operators [19], i.e. mappings of the form ψ:D → D that are

monotone: if x � y, then ψ(x) � ψ(y),
contractive: ψ(x) � x, and
idempotent: ψ(ψ(x)) = ψ(x).

Any projection of the semilattice (D,�) is �-preserving, i.e., for any X,Y ∈ D

ψ(X � Y ) = ψ(X) � ψ(Y ),

which helps us to relate learning results in projections to those with initial
representation (see Section 3).

As for practical complexity of computing � we can say the following. Using
a Pentium PIII-1 GHz, 512 MB RAM, testing subgraph isomorphism for an
average graph with 30-40 vertices and 30-40 edges took up to 5 seconds, but
usually, less than a second.

In our computer experiments we used several types of projections of sets of
labeled graphs that are natural in chemical applications:

– k-chain projection: a set of graphs X is taken to the set of all chains with k
vertices that are subgraphs of at least one graph of the set X ;

– k-vertex projection: a set of graphs X is taken to the set of all subgraphs
with k vertices that are subgraphs of at least one graph of the set X ;

– k-cycles projection: a set of graphs X is taken to the set of all subgraphs
consisting of k adjacent cycles of a minimal cyclic basis of at least one graph
of the set X .



Learning Closed Sets of Labeled Graphs for Chemical Applications 195
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Fig. 1.

3 Learning Models

In this work we used several learning models realized within QuDA data miners’
discovery environment [25]2: concept-based learning (JSM-method) [22,3,26] and
several machine learning algorithms from the Weka workbench [27]: C4.5 algo-
rithm for induction of decision trees, Naive Bayes classifier, and JRip (induction
of ripple-down rules).

JSM-hypotheses were defined in [22] for standard object-attribute represen-
tation in a special logical language. These hypotheses were redefined as JSM-
or concept-based hypotheses in [16,3,26,19] in terms of Formal Concept Analysis
(FCA). For graph sets hypotheses can be defined as follows. Suppose we have a
set of positive examples E+ and a set of negative examples E− w.r.t. a target
attribute.
2 Free download: http://www.intellektik.informatik.tu-darmstadt.de/∼peter/

6
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A graph set h ∈ D is a positive hypothesis iff

h� ∩ E− = ∅ and ∃A ⊆ E+ : A� = h.

Informally, a positive hypothesis is a similarity of positive examples, which does
not cover any negative example. A negative hypothesis is defined analogously, by
interchanging + and −.

The meet-preserving property of projections implies that a hypothesis Hp in
data under projection ψ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ψ(H) = Hp.

Hypotheses are used for classification of undetermined examples along the
lines of [22] in the following way. If e is an undetermined example (example
with the unknown target value), then a hypothesis h with h � δ(e) is for the
positive classification of g if h is a positive hypothesis and h is for the negative
classification of e if h is a negative hypothesis.

An undetermined example e is classified positively if there is a hypothesis
for its positive classification and no hypothesis for its negative classification.
Example e is classified negatively in the opposite case. If there are hypotheses for
both positive and negative classification, then some other methods (e.g., based
on standard statistical techniques) may be applied. Obviously, for classification
purposes it suffices to use only hypotheses minimal w.r.t. subsumption �.

The definition of classification suggests that hypotheses can be considered
as disjunctions of lggs of positive and of negative examples. Notwithstanding its
simplicity, the model of learning and classification with concept-based hypotheses
proved to be efficient in numerous computer experiments, including PTC com-
petition [13,10]. This learning/classification model, together with FCSS repre-
sentation, produced Pareto-optimal classifications in each of the four sex/species
groups (from {mice, rats}×{male, female}): in three groups the results were on
the ROC curve and in the fourth group (male rats, MR) the result was slightly
below the curve with no other strictly better classification result.

An algorithm for computing hypotheses on closed graph sets was described
in [3]. Here we realize it by simulating � operation with usual set-theoretic
intersection ∩ in the following way. For each example e described by a labeled
graph δ(e) first a set of all subgraphs of δ(e) is computed up to the projection
level k = N . Each such subgraph is declared to be a binary attribute and example
e is represented by the set S(e) of binary attributes that correspond to subgraphs
of δ(e). For two examples e1 and e2 intersection S(e1) ∩ S(e2) is equivalent to
finding similarity ψ(δ(e1)) � ψ(δ(e2)).
Example 2. In Figure 1 consider JSM-hypotheses for the dataset with posi-
tive examples described by graphs Γ1,..,Γ4 and negative examples described by
graphs Γ5 and Γ6. Here Γ1 � Γ2 � Γ3 and Γ2 � Γ3 � Γ4 are minimal positive
hypotheses, whereas Γ1 � Γ2 � Γ3 � Γ4 is not a positive hypothesis.

Then standard Weka procedures for C4.5, Naive Bayes and JRip are run in
QuDA environment. Computing concept-based hypotheses in QuDA is realized
by means of algorithms for computing lattices of closed sets (or concept lattices),
see review [17].
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After that we perform reduction of attributes [18]: each column of the ex-
ample/attribute binary table that is equal to the (component-wise) product
(conjunction) of some other columns, is removed.

Reduction is realized by an efficient algorithm based on results from FCA [18].
Lattice-theoretical properties guarantee [18] that thus reduced set of columns
gives rise to the isomorphic lattice of closed sets of attributes and thus, to the
same set of concept-based hypotheses as defined above.

Since in practice reduction often results in diminishing sets of attributes
in several times (see experimental results in Section 4), in our experiments we
wanted to find out how reduction affects performance of other learning methods,
such as C4.5, Naive Bayes and JRip. Upon reduction, every learning method was
executed for data tables again. Results for reduced and nonreduced tables were
compared.

The general PBRL (project-binarize-reduce-learn) procedure looks as fol-
lows:

1. For each example e and for k compute i-projections of δ(e) for 1 ≤ i ≤ k.
The subgraphs from this projections are declared to be binary attributes;

2. Compose example/attribute binary table;
3. For each learning method LM run LM, classify examples from test sets,

compute cross validation;
4. Reduce the binary (example/attribute) table;
5. For reduced table and for each learning method LM run LM, classify exam-

ples from test sets, compute cross-validation.

General procedure for computing with FCSS looks similar with first two lines
replaced by the following ones:

1∗. For each example e compute FCSS code (set of FCSS descriptors) of its
molecular graph;

2∗. Compose example/attribute binary table, where each attribute stays for an
FCSS descriptor;

Another approach that uses learning with graph sets was realized by means
of Subdue and SubdueCL [28,9] systems. Subdue finds subgraphs that appear
repetitively in graph databases. SubdueCL can learn from positive and negative
examples. It generates graphs common to many positive examples that are com-
mon to a small amount of negative examples (the corresponding values are cap-
tured exactly within the error estimate). As reported in [9], SubdueCL slightly
outperformed ILP systems FOIL [29] and Progol [30] on the PTC dataset.

SubdueCL pursues the covering strategy: having found a subgraph with the
best error estimate, SubdueCL excludes positive examples covered by this sub-
graph (i.e., example descriptions that contain it as a subgraph) and iterates on
the remaining set of positive examples. Thus, skipping certain generalizations
of positive examples, Subdue performs efficiently, however may lose in learning
accuracy. The latter is much more important in such domains as Predictive Toxi-
cology, where SubdueCL [31], as estimated by ROC diagrams, was outperformed
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by the concept-based learning model [10] (classifications of SubdueCL were op-
timal only in one group (male rats) and were strictly worse than concept-based
hypotheses [10] for male and female mice.

4 Experiments with Projections of Labeled Graphs

In this section we analyse results of applying the introduced data representa-
tion and learning models to the analysis of several chemical datasets 3. For each
dataset we computed graph projections (mostly, k-vertex projections, except for
the 25PAH dataset (Section 4.5), where we computed k-cycles projections). Ev-
ery subgraph of each graph in the projection (up to isomorphism) was declared
to be a binary attribute, so each graph dataset was turned into a binary object-
attribute table, which was then reduced. We also computed FCSS codes for each
dataset. After that for each dataset we ran several learning methods realized
within QuDA environment (JSM or concept-based hypotheses, induction of de-
cision trees by C4.5, Naive Bayes, JRip). We computed 10-fold cross-validation
and in several cases (PTC, halogen substituted hydrocarbons, alcohols, poly-
cyclic aromatic hydrocarbons), where a known test set was available, we per-
formed classifications for the test set. We compared cross-validation and results
on the test set for each chemical dataset. Results of the analysis are presented
in similar tables. For PTC datasets we plotted results of our experiments on the
ROC curves of the PTC workshop [13].

4.1 Experiments with PTC Dataset

Participants of the workshop on Predictive Toxicology Challenge (PTC) [13]
discussed results of competition of machine learning programs that generated
hypothetical causes of toxicity from positive and negative examples.

The training dataset consisted of descriptions of 409 molecular graphs of
chemical compounds with indication of whether a compound is toxic or not for
a particular sex/species group out of four possible groups: {mice, rats}× {male,
female}. For each group there were about 120 to 150 positive examples and 190
to 230 negative examples of toxicity. The test dataset consisted of 185 substances
for which forecasts of toxicity should be made.

The average size of the initial graphs was 25 vertices and 26 edges in the
training set, and 45 vertices and 46 edges in the test set. We generated graph
k-vertex projections for k from 1 to 8, thus producing 8 binary object-attribute
tables. For k = 9 we computed projections in 30 hours, but had to stop generation
of the binary object-attribute matrix (which involves testing graph isomorphism)
after 70 hours, having obtained 561921 attributes. With the growth of k, the
number of attributes in the resulting tables becomes large, but reduction of
attributes diminishes the size of tables in several times. Compared to computing
projections of initial graphs (which comprises the major part of computation)
and hypothesis generation, the reduction is relatively fast, see Table 1.
3 These datasets can be downloaded from http://ilp05-viniti.narod.ru
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Table 1. PTC dataset: number of attributes in representation tables before and after
attribute reduction

projection size 1 2 3 4 5 6 7 8

# attributes in full table 22 95 329 1066 3275 9814 28025 76358
# attributes in reduced table 22 72 153 373 812 1548 2637 3981
reducing time (in sec.) 1 1 2 5 16 57 219 883

To estimate different classification strategies in combination with k-
projections (1 ≤ k ≤ 13) the 10-fold cross-validation procedure was used for
the given training dataset. Table 2 shows the best results w.r.t. predictive ac-
curacy and total number of predictions. The best strategy for MR group w.r.t.
predictive accuracy is the one based on JSM-hypotheses. This strategy attains
predictive accuracy of 58% with k-projection representation. For FR group the
best result (predictive accuracy of 66%) was obtained by JRip rules in combina-
tion with k-projections. The use of FCSS representation leads to the following
results. For MR group the best strategies w.r.t. predictive accuracy are JSM-
hypotheses and C4.5 algorithm, the both strategies attain predictive accuracy of
52%. For FR group JSM-hypotheses with FCSS codes also is the best strategy
w.r.t. predictive accuracy. It attains predictive accuracy of 56%.

If we consider both precision and number of predictions then the best result
for k-projections representation for MR group is obtained by Naive Bayes (it
attains predictive accuracy of 56% and 64% of total number of predictions).
For FR group JRip results in 66% of predictive accuracy with 40% of total
number of predictions. Naive Bayes also turns out to be the best strategy in
combination with FCSS representation for both groups (predictive accuracy of
51% and 49% of total number of predictions for MR group; corresponding values
for FR group are 50% and 25%). The results of 10-fold cross-validation suggest
that the performance of learning methods stabilizes with the growth of k.

Table 2. The results of 10-fold cross-validation procedure for PTC dataset obtained
with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R)
with FCSS-encoding (F) and 3, . . . , 14− projections (PR); A – predictive accuracy,
TP – total number of predictions

MR (male rats) FR (female rats)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR J-F C-F N-F R-F J-PR C-PR N-PR R-PR

A 0.523 0.527 0.511 0.475 0.586 0.556 0.552 0.556 0.560 0.462 0.500 0.385 0.464 0.571 0.468 0.662
TP 0.164 0.397 0.493 0.199 0.266 0.643 0.552 0.448 0.123 0.263 0.246 0.044 0.109 0.403 0.429 0.395

4.2 Classification in Projections Estimated by ROC Curves

The results are shown in Figure 2, where the following abbreviations are used:

– J-PR1, J-PR2, ..., J-PR8 – the results obtained using 1- to 8-projection
representations, respectively, in combination with JSM-hypotheses; similarly, for
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other methods (C4.5, Naive Bayes, JRip), the results marked as C45-PRi, NB-
PRi and R-PRi (where 1 ≤ i ≤ 8);

– WAI1, GONZ, KWAI, LEU3 are other Pareto-optimal models submitted
to the Predictive Toxicology Challenge for this animal group.

Note that the Figure 2 shows both the “old” ROC-curve (composed by LEU3,
KWAI, GONZ, and WAI1 models) and the “new” one (composed by LEU3, J-
PR5, C45-PR3, NB-PR3, and R-PR7 models).
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Fig. 2. Projected pattern structures “On the ROC” for groups MR (male rats) and
FR (female rats)

For the MR group (male rats; see Figure 2) the following results were ob-
tained. The use of k-projections (with k ≤ 3) together with JSM-hypotheses
does not lead to any good classifications. However, the C4.5 algorithm and Naive
Bayes classifier appears on the “new” ROC-curve. The use of 4-projections in
combination with JSM-hypotheses and C4.5 results in better classifications: the
corresponding points are above the “old” ROC-curve. The 5-projections repre-
sentation in combination with JSM-hypotheses happens to be one of the five
“new” best strategies: it results in making 8 true positive predictions with only
2 false positive ones. As in the case with JSM-hypotheses the use of decision tree
induction strategy leads to the classification that is also better than those on
the “old” ROC-curve. The use of 6-projections with JSM-hypotheses, however,
does not result in better classification: the number of true positives decreases
to 6; the number of false positives remains the same. At the same time new
classifications of the C4.5 are among the best ones. The corresponding point lies
on the “new” ROC-curve. The use of 7-projections and JSM-hypotheses, with
4 true positives and 1 false positives again appears on the “new” ROC-curve.
The classification based on the 8-projections representation and JSM-hypotheses
increases the number of true positives to 6 but also increases the number of false
positives to 2; this strategy is thus strictly worse than using 5-projections (as-
suming positive cost of making a true positive classification).
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For the FR group (female rats; see Figure 2) the points corresponding to
the results for 4-, 5-, 6-, and 8-projections in combination with JSM-hypotheses,
also lie above the “old” PTC ROC-curve, where concept-based hypotheses were
computed for FCSS representation. However, other methods do not lead to any
good classifications. None of them in combination with k-projections appears
above the “old” ROC-curve. There was only one exception: ripple-down rules
(JRip) using 6-projections representation show the same result as LEU3.

Computer experiments with PTC data in comparison of FCSS, k-projections
and reduced/nonreduced tables showed that the use of reduced tables, as com-
pared with nonreduced ones, does not make any difference for concept-based
hypotheses, makes a very slight difference (no more than 5%) for induction of
decision trees and small difference (about 10-15%) for other methods such as
Naive Bayes and JRip. As for comparison of projections of different type, first
there is an obvious improvement with the growth of the projection parameter k.
Starting from a certain value of k there is no further improvement.

4.3 Toxicity of Alcohols

In [32] the results of studies on the relationships between structures of miscella-
neous alcohols (from [33]) and their acute toxicity for rats and mice using JSM-
(concept-based) hypotheses with FCSS representation are described.

The training set contains descriptions of 89 molecular graphs of chemical
compounds with indication of acute toxicity degree (high, moderate, and low).
Separate computations were made for two target values: high and moderate. In
the first case moderate and low toxic substances were considered as negative
examples. In the second case only low toxic substances were considered as neg-
atives. The test set consisted of 22 substances. The average size of a molecular
graph was 24 vertices and 23 edges.

Tables 3 and 4 report on the results obtained with FCSS and k-projections
(4 ≤ k ≤ 13) in combination with various learning models.

Table 3. Toxicity of alcohols: results obtained with JSM-hypotheses, FCSS-encoding
(F) and 4−, . . . , 13−projections

F 4 5 6 7 8 9 10 11 12 13
# correct predictions 8 9 10 10 14 14 13 12 11 11 11
# incorrect predictions 2 0 3 1 1 2 3 3 3 3 3
# unclassified substances 12 13 9 11 7 6 6 7 8 8 8

Table 4. Predicting toxic potential of alcohols: the best results obtained with JSM-
hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R) in combination
with FCSS-encoding (F) and 3, . . . , 14− projections (PR)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 8 19 16 19 14 19 12 17
# incorrect predictions 2 3 6 3 1 3 10 5
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For k-projections with 1 ≤ k ≤ 3 there was no classification with JSM-
hypotheses whatsoever. For k = 4 with JSM-hypotheses a result is better than
that for FCSS was obtained. For k = 5 and k = 6 results are not comparable
with those for k = 4: the number of correct classifications is 10, but the numbers
of incorrect predictions are equal to 3 and 1, respectively. The result obtained
with JSM-hypotheses for 7-projections is among the best results for 1 ≤ k ≤ 13:
14 correct predictions with only 1 mistake. Starting with k = 8 the growth of k
results in the decrease of predictive accuracy for JSM-hypotheses. The predictive
accuracy of other methods also decreases with the growth of k. For example,
the use of C4.5 algorithm and 8-projections leads to the classification with 19
correct predictions and 3 incorrect predictions, but the use of 11-projections
representation in combination with the same learning model results in 18 correct
predictions with 4 mistakes.

In general, we observe that the use of reduced vs. nonreduced tables does
not affect results obtained with the JSM-hypotheses and slightly affects results
of other methods. The best classifications were obtained for average projection
values (4 ≤ k ≤ 8). Experimental complexity of computing projections for this
dataset, is given in Table 5

Table 5. Alcohol dataset: time of computing projections

size of projection 4 5 6 7 8 9 10 11 12 13
time elapsed, sec. 12 21 44 109 317 937 3163 12402 45822 156297

4.4 Predicting Carcinogenic Potential in Halogen-Substituted
Aliphatic Hydrocarbons

The training set [34] contained descriptions of 57 molecular graphs with values
of carcinogenic potential. The unique target property here was “to be carcino-
genic”. The test set consisted of 13 molecular graphs. The results for different
k-projections and FCSS in combination with different learning models are shown
in Table 6.

Table 6. Predicting carcinogenic potential in hydrocarbons: the results obtained with
JSM-hypotheses and FCSS-encoding (F) and 3, . . . , 14− projections

F 3 4 5 6 7 8 9 10 11 12 13 14
# correct predictions 2 6 6 6 7 7 7 7 7 7 7 7 7
# incorrect predictions 0 0 0 0 0 0 0 1 1 1 1 1 1
# unclassified substances 11 7 7 7 6 6 6 5 5 5 5 5 5

The average size of the initial graphs was 8 vertices and 7 edges in the training
set and 13 vertices and 12 edges in the test set. As the projection size increases
the classification accuracy first grows and then (for k ≥ 9) starts to decrease
(Table 6).
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For another dataset with 25 molecular graphs in the training set, 17 graphs
in the test set, and the same sizes of molecules as above a numerical value
(characteristic of a specific activation energy of a molecule) [35] was supplied for
each substance. This value was treated by means of the semilattice on intervals
as described in Section 2. The resulting similarity semilattice is that on pairs of
the form (graph set, numerical interval). The computation results are shown in
Table 7.

Table 7. Predicting indirect carcinogenic potential in hydrocarbons with JSM-
hypotheses, FCSS-encoding (F), and 3, . . . , 14− projections

F 3 4 5 6 7 8 9 10 11 12 13 14
# correct predictions 6 8 9 11 11 11 11 11 11 11 11 11 11
# incorrect predictions 5 2 2 1 1 1 1 1 1 1 1 1 1
# unclassified substances 6 7 6 5 5 5 5 5 5 5 5 5 5

Again, we computed k-projections of the initial molecular graphs for 1 ≤
k ≤ 13. The stratified 10-fold cross-validation procedure was used to estimate
different classification strategies in combination with k-projections (1 ≤ k ≤ 13).
Table 8 shows the best results w.r.t. predictive accuracy and total number of
predictions. On the one hand the best strategies w.r.t. predictive accuracy are
C4.5 algorithm, the one based on JSM-hypotheses, and JRip rules. C4.5 attains
predictive accuracy of 83% with FCSS representation, JSM and JRip attained
predictive accuracy of 78% with k-projections. On the other hand, if we consider
both precision and number of predictions, then the best result is obtained with
JRip rules (78% of predictive accuracy and 93% of total number of predictions
with k-projections). 66% of total number of predictions was attained with the
use of C4.5 and FCSS representation. Table 8 also shows the results of 10-fold
cross-validation for reduced tables. The use of reduced tables, as compared with
nonreduced ones, does not make any difference for concept-based hypotheses,
makes a very slight difference (no more than 5%) for C4.5 and small difference
(about 10-15%) for other methods such as Naive Bayes and JRip.

Table 8. The results of 10-fold cross-validation for hydrocarbons dataset obtained
with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules (R) in
combination with FCSS-encoding (F) and 3, . . . , 14− projections (PR); A – predictive
accuracy, TP – total number of predictions

nonreduced table reduced table

J-F C-F N-F R-F J-PR C-PR N-PR R-PR J-F C-F N-F R-F J-PR C-PR N-PR R-PR

A 0.800 0.833 0.722 0.765 0.778 0.750 0.765 0.778 0.800 0.833 0.722 0.765 0.778 0.812 0.750 0.765
TP 0.533 0.667 0.867 0.867 0.467 0.800 0.867 0.933 0.533 0.667 0.867 0.867 0.467 0.867 0.800 0.867

The predictions made by different strategies were compared with known ex-
perimental results from [34] the following evaluations were obtained. As in the
previous experiment with the k-projections and JSM-hypotheses where 1 ≤ k ≤
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2 no classification was made at all. The strategies based on 3-, 4-projections and
JSM-hypotheses result in better classifications than those with FCSS-encoding.
The same result was attained by the strategy based on induction of decision trees
(C4.5 algorithm). It results in 12 correct predictions and 5 incorrect predictions.
For k ≥ 5 in combination with JSM-hypotheses the best result was obtained
w.r.t. predictive accuracy. Other methods with k-projections (k ≥ 5) made ap-
proximately the same number of correct predictions as the strategy based on
JSM-hypotheses. However, the number of incorrect predictions is also a little
bit larger. Starting from a certain value of k the results stabilize and no further
improvement is made. For example, with JSM-hypotheses and Naive Bayes, k is
equal to 5, while for C4.5, k = 11. Table 9 shows the best results obtained with
different methods.

Table 9. Predicting of indirect carcinogenic potential in hydrocarbons: the best results
obtained with JSM-hypotheses (J), C4.5 (C), Naive Bayes classifier (N), and JRip rules
(R) in combination with FCSS-encoding (F) and 3, . . . , 14− projections (PR)

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 6 12 8 8 11 15 13 12
# incorrect predictions 5 5 9 9 1 2 4 5

Thus, as for other datasets the best results were obtained for average projec-
tion values and were almost similar for reduced/nonreduced tables.

4.5 Analysis of Carcinogenicity of Polycyclic Aromatic
Hydrocarbons

In the following experiment we considered data from [36]. The training dataset
contains the descriptions of 25 molecular graphs of polycyclic aromatic hydro-
carbons with indication of carcinogenic degree. As in Section 4.3 two separate
computations were made for 2 target properties. To compare different classi-
fication methods in combination with k-cycles projections representation, we
computed leave-one-out cross-validation. The best results w.r.t. predictive ac-
curacy for the first target property are shown in Table 10. Learning with JSM-
hypotheses attains the best results in most of the cases. However, other methods
(e.g., C4.5) make more total predictions, see Table 10. Computer experiments
with 25PAH data in comparison of FCSS, k-projections and reduced/nonreduced
tables showed that the use of reduced tables, as compared with nonreduced ones,
does not make any difference for any method.

To test the strength of methods we considered the test dataset from [37,38]
and applied the hypotheses computed for k-cycles projections representation
(with 1 ≤ k ≤ 7) to classification of substances from the test set. There were 19
substances in the test dataset and Table 11 shows the best results obtained by
different methods. From Table 11 we can conclude that among all methods w.r.t.
predictive accuracy and completeness, the strategy based on JSM-hypotheses is
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Table 10. The values of Leave-One-Out on 25PAH for the first target property, dif-
ferent methods, FCSS-encoding (F), and 3−, . . . , 7−cycles projections

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
predictive accuracy 0.818 0.688 1.000 0.846 0.909 0.818 1.000 0.846
total number of predictions 0.643 0.786 0.500 0.786 0.714 0.643 0.500 0.786

Table 11. Predicting indirect carcinogenic potential in PAH: different learning meth-
ods, FCSS-encoding (F) and 3−, . . . , 7− cycles projections

J-F C-F N-F R-F J-PR C-PR N-PR R-PR
# correct predictions 6 5 13 1 7 7 11 7
# incorrect predictions 5 14 6 18 6 12 8 12

the best one for the second target property in combination with k-cycles projec-
tions representation (for all values 1 ≤ k ≤ 7). For the first target property the
best result was obtained by Naive Bayes, next comes the JSM-method. At the
same time we consider the combination of two target properties to predict the
carcinogenic degree of a substance from the test dataset. Thus the comparison
between different methods was drawn w.r.t. both target properties. From Ta-
ble 11 we can conclude that best results w.r.t. predictive accuracy were obtained
with JSM-hypotheses for both FCSS codes and k-cycles projections.

As for practical complexity, cyclic projections were generated in less than
0.5 second for all values of k, parameter of projection, since each graph in this
dataset contains no more than 7 cycles in the minimal cyclic base.

5 Conclusions

Definitions of graph similarity operations and its approximations (projections),
based on order- and lattice-theoretic ideas, were considered and studied exper-
imentally on several chemical datasets with several learning models. In many
cases the proposed graph representation results in better predictive accuracy
as compared to that with standard FCSS language for the analysis of biological
activity of chemicals. We experimentally studied a technique for lowering dimen-
sionality of datasets, called reduction of attributes. For JSM or concept-based
learning the reduction of attributes is strictly information lossless. The reduction
proved to be useful for decision tree induction, Naive Bayes classifiers, and JRip:
while lowering the number of attributes in several times, it results in almost no
loss of accuracy in case of decision tree induction and results in minor loss of
accuracy in case of Naive Bayes and JRip classifiers. On the other hand, we
studied the performance of learning methods with respect to precision of graph
approximation controlled by projection level. With the increase of representa-
tion accuracy (k, parameter of projection), the performance of learning methods
first improves, then stabilizes and in some cases becomes worse after a certain
threshold, seemingly due to overfitting effects. This picture, standard for the
role of dimensionality in machine learning, suggests the use of molecular graph
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approximations instead of complete graphs: keeping dimensionality in a certain
range, we can even gain in predictive accuracy. Further work on improving the
representation model with labeled graphs will be related to accounting for 3D
information, e.g. various types of isomerisms.
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